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A NEW DERIVATION OF THE EQUATIONS OF

ALREADY-UNIFIED FIELD THEORY

by

Menahem Schiffer

and

Ronald Adler

The algebraic Rainich conditions and the differential relations

of Wheeler and Misner which form the basis of the already unified field

theory are usually obtained from the Einstein-Maxwell system of equations

by rather laborious tensor analysis. We here obtain these results by

utilizing classical matrix theory and a special local coordinate system.

0. Introduction

The combined equations of classical vacuum electrodynamics and

general relativity,

a) RV= f af, + 1 g f ~ f T

(0.1) b) flv = o
liv

c) *fv =0
liv

are usually referred to as the Einstein-Maxwell equations. These were

investigated by Rainich in 1925 [1] and Wheeler and Misner in 1957 [2,3],

who found that the system (1) is equivalent to the following set of

purely geometric relations:



0I
a) --o =0

b) R 0ivRcu a (R~p R 9g,

(0.2) c) R > 0 (system of real coordinates)

d) v -v' =0 v - R RK

Subsequently, Wheulcr, Misner and others used the system (2) as the

basis of a geometrical-topological theory of gravitation and electro-

magnetism, i.e. the already-unified field theory [2,3]. It is our 1
purpose to give an alternative derivation of (2) from (1) which is 1
based on classical matrix theory and is considerably simpler than the

original derivation. I
1. Some properties of antisymmetric matrices T

Let us consider a 4 x 4 antisymmetric matrix f = - with

complex components. We will identify this matrix with the Minkowski

electromagnetic field tensor in part 3. The characteristic polynomial

O(X) = XI - fi of f is easily shown to be an even function of X: L

(1.1) 0(k) IxI - fl - I.i + fTj = XI + fl = (-l)4 I-XI - fl - 0(-X)

Thus 0(X) 0(-X), and it follows that 0 has the form

(1.2) (x) = x+ a2 x2 + a

2



Furthermore, it is evident from (1.1) that if X is an eigenvalue of f

then -X is also. The eigenvalues, therefore, occur in two pairs:

X1, "Xl' X 2 , -X 2 . It is easy to express the coefficients a2  and a0

in (1.2) in terms of these eigenvalues) since the eigenvalues are roots

of O(X), we can write

(1.3) () - (X-Xl)(X+x )(X-x 2) (+ 2) = X4 - ( ) 2+ 2 )22

Thus the coefficients a2  and a0 are easily identified as

2 2 2 2
(14& 2  1 (X+ 2 ) 0 a0  2

The Cayley-Sylvester theorem tells us that f itself satisfies

O(f) = 0, so we have from (1.2) and (1.4)

(1.5) f4 + a 2  + a o
2 01 21'2

The preceding results allow us to construct an interesting

symmetric matrix from f. Define

(1.6) T = f2 + -I2= -

This will be identified in part 3 with the energy-momentum tensor of

the electromagnetic field. From the definition (1.6) and equation (1.5)

it follows immediately that ? is a multiple of the identity matrix:

3



7
(1.7) T, X1 ( 2) 'I

We will always assume that , so that T2  is not zero.

A second interesting property of T follows fron a consideration

of its Jordan canonical form for similarity. By Jordan's theorem any !

complex matrix is similar to a direct sum matrix as follows:

]
Cl c2" 1

(1.8) T - 1 c

NC N

where the Ci have scalars T on the diagonal and "l"s on the 1
first superdiagonal:

1 0 O...°0

(1.9) c1 0 -o 1 0 ... 0

"0 0 0 0 ...

However, for the present case the Ci are severely limited by the

requirement (1.7). Indeed, if one squares the equation (1.8) and

compares with (1.7) it is evident that the Ci must all be 1 X 1

matrices and that the Ti must have the values + 1 , -

Thus

I



(1.10) T 2 -= Q

and the Ti are clearly the eigenvalues of T.

The signs of the Ti can be determined from the definition

(1.6) and the fact that they are the eigenvalues of T:

2 ,2)i -

(1.n1) Ti - TI = I[Ii - "1 (x + X7

Thus (2 + X2) is an eigenvalue of 2 and must consequently
2 2

be X or 2 each occurring twice. This gives
1 ':

(1.12) TI = 2 " T =T =

and upon substitution into (1.10)

(1.13) T Q- Q (TI _O - ; =0

Thus it is evident that T has a null trace and can be written as

(1.14) T = f2 (Trf 2 )I
4
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In part 4 we will need the fact that the Q which appears in

(1.13) may be chosen to be orthogonal: Q-1 = Q T. The proof of this is

straightforward. Since T is symmetric, (1.13) gives

I

from which j

1,16) 2(Q T ( T) '

If QQT is now written in terms of 2 X 2 submatrices as

(1.17) (a T) a

then substitution into (1.16) reveals that y = = . Thus

(1.18) Q QT = (a 0)
and the submatrices a and 0 are clearly symmetric and have nonzero

determinants.

Next note that the choice of Q is somewhat arbitrary since

it may be replaced by

(1.19) R 0s Q

6



where R and S are arbitrary 2 X 2 nonsingular matrices. This is

evident from the fact that

(1.20) T = -

Furthermore, it is evident that

(1.21) °RT 0 ST)

Thus in order to complete the proof we need only show that R and S

may be chosen so that Ra RT = Sp ST = I, for then by (1.20) and (1.21)

Z will be the desired orthogonal matrix. This is an easy task; let

(1.22) a- ( ; R = (

and substitute into 1a RT = I. This gives three equations in the four

unknowns u, v, w, and z.

2 2
au + 2buv + cv = 1

2 2(1.23) aw + 2bwz + cz = 1

auw + buz + bvv + czv = 0

If a is nonzero, a solution is

(1 .24 ) v = o; u -- 1 w= a -b

7al
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The case of nonzero c is completely analogous. If both a and c,

however, are zero we can use the following solution:

(1 24 ) z =i ; u = - ; v = - i ; w =

2b' 2b

This exhausts all cases, so we have shown that R does exist. In

completely similar fashion there exists a nonsingular S such that

Sp ST = I, so the proof of the statement is complete: the Q in

(1.13) can be chosen to be orthogonal,

The canonical form (1-15) for T can be utilized to investi-

gate the structure of its generating matrix f. Write f in the form

(1.25) f= QT ( ) Q1

where Q is the same orthogonal matrix as in (1.13) and K, L, M,

and N are to be determined Since f is antisymmetric, both K and

N are also antisymmetric. From the definition of T (1.6) and the

canonical form (1o13), one finds easily that

X1 0 k2
(1,26) f 2 =QT 11 0 Q

0 X2

Using (1.25) for f and (1°26) for f2  and the obvious identity

f2 fff 2 =, we obtain

(1,27) (%71 _ X2)L = (%j - Xl) M a 0

8



V

"2 a d 2
Since and 2  are assumed to be unequal, L and M are zero.

Similarly, the identity ff = f2 yields

(1.28) K2  X 21 -- 2

Since K and N are antisymmetric this tells us that

-- -o
(1.29) K = iX1 J ; N = iU2 J ; J = -1 o

The signs in (1.29) are arbitrary and have been chosen to be positive.

This gives the following canonical form for f

(1.30) f = QT (ixlJ Oi)0 i'X2 J)

where Q is an orthogonal matrix.

2. A simplification of preceding results

Having obtained the canonical form of f in (1.30) we can

put all the preceding results in very simple form. Define

(2.1) p = Q ( ) ; q 0 Q (0 o)

where Q is the same orthogonal matrix as in (1.30). Then one finds

by an elementary calculation that

9



2 2 p3 =p; q3
(2.2) 4 q

a = pq - 0; p + q -I etc.

The canonical form (1.30) now is expressible as

(2.3) f " X1p + X2q

From the definition of T and (2.2), we have

12 22 2

(2.4) T= ix- 2) q2 X- 2)(p -q)

It immediately follows that T is traceless and that T is a I
multiple of the identity

(2.5) T2 (X 2- ).2)(p 4 + q4 ) = 1 (TrT 2 ) I41 - X2

These are the principal results of part 1, but now made quite trans-

parent.

The degree of uniqueness in the relation of f to T is

quite interesting and easily ascertained. If we construct a T matrix

from a different ? defined by

I
(2.6) f ;Xp+ 3 2q X, = _ X! cosh a

12 1 12

/X2-)JX sinh a2 1 2

101 lo |



where a is an arbitrary parameter, then

(- 2 2 2) 1 2 2

(2.7) X1 - V) (p - q) X 2 X-2 )(P q) -T

that is, f and f generate the same T independent of the choice

of a. Note in particular that the choice

(2.8) cosh a = 1 , sinh a
/X2 X2 J7X

clearly yields the original f, i.e. ? = f. It is, therefore, clear

that an entire one-parameter family of f matrices generates the same

T matrix.

3. The algebraic Rainich conditions

We now wish to apply the results of parts 1 and 2 to the

task of deriving the Rainich conditions (0.2a, b, c). For convenience

we will work in a locally geodesic system, so that at some fixed world-

point P the Christoffel symbols vanish and the ordinary and co-

variant derivatives of first order coincide. Such a locally geodesic

system is only determined up to a linear transformation with constant

coefficients. Thus, in order to use matrix theory, we may use a

geodesic system in which the metric tensor gV is the Kronecker 8 V.

This allows us to ignore the distinction between contravariant and

covariant indices and makes tensor algebra and matrix algebra the

same. Two further features of this special system should be noted;

11



firstly, it is only unique up to an orthogonal transformation, which

leaves B invariant. Secondly, in such a system both the coordinates
Iv

xIL and the Minkowski tensor f4 will in general be complex.

With the above choice of a coordinate system, we can write the

energy-momentum tensor of the electromagnetic field (0.la) in matrix

notation as

4

Comparison with (1.16) shows that T depends on f in precisely the

same way as the T matrix which we investigated in part 1 depended on

the antisymmetric matrix f. Thus all the results concerning T in

part 1 are immediately applicable to the electromagnetic energy-

momentum tensor. In particular, we can assert that T is traceless

and T2  is a multiple of I. By equation (O.la) we can say the same

about R v. That is, in tensor notation,

(3.2) a) R =0; b) R iv 1 ( R ) g

Furthermore, since (3.2) is written in covariant form it is true at all

world-points and in all coordinate systems.

It is possible to strengthen equation (3.2b) by demonstrating

that, under reasonable physical assumptions (as explained below), the

scalar R R is positive and real. This is easily shown as follows.

From (2.5) we know that R R may be expressed in terms of the

2 _ 2 )2 This is a covariant statement
eigenvalues of fo as - T

12



Indeed, the eigenvalue equation of f O may be written covariantly as

(3.3) f 0 " a - 400 t

from which it is clear that the eigenvalue X is a scalar. Equation

(3.3) gives rise in the usual way to a covariant secular equation for X:

(3.4) I0 - xgOI = 0

What we wish to show now is that if we make the physically reasonable

demand that f W be real in a system of real coordinates then

2 _2 )2-X-2) is a positive real scalar.

A scalar can be calculated in any coordinate system so we will

momentarily utilize a real tangent Lorentz system with

(3.5)= ( "l

We can write foCA which is now assumed real, in the general form

(3.6) f (La 0 e)

-d
-c-e -f 0

13



and for convenience we introduce the real three-tuple vectors

C = (a, b, c) and D = (f, -e, d). The secular equation (3.4) with {
gC, from (3.5) and fO from (3.6) is found by direct expansion to be I
(3.7) X. ( -D) X?2 - (.D) 2  o -

where we have used three-dimensional vector notation. This equation

has the two solutions 1
(3.8) 

2 -D2  C2 -D22) 4 4(c.D) 2

from which we find immediately that I

(3.9) R RT (X - )2_ (C " 2)2+( I

By our standing assumption that A this is obviously a positive -
real number. Since it is also a scalar, we have shown that it is real I

and positive in general.

The above fact is interesting as a statement concerning (3.2b),

but it is also important in the derivation of condition (2.b) as we

shall see presently. t

It is a well-known fact that in special relativity the component I

To 00of the energy-momentum tensor is proportional to the energy density

of the electromagnetic field and must, therefore, be a positive number.

In order to preserve the same interpretation of T in general rela-

tivity we must show that

14 I



R 00

(3.1o) oo>0

is a consistent covariant demand, at least in all real coordinate

systems.

To demonstrate the consistency of this relation consider R

as a linear transformation on an arbitrary vector v

(3.11)W a a v

From (3.2b) it is evident that

(3 )a 1 T

(3.12) wa w  = R ) v  vn

Since RT RTP has been shown to be positive, we see that w. and

are both timelike, both spacelike, or both null. In particular, we

can say that R carries the light cone into itself.

Next we consider R in a new coordinate system

(.13) 00 &0 &

Let - be v4 and &o R be w as above, so that Ro can

be written

(3.14) 00 v wp.

15



Thus it is clear that the demand that be positive definite is

equivalent to the covariant requirement that R carry a vector va

into a vector wa such that v w 0. This can be interpreted

physically by saying that Ra carries the forward light cone into

itself and the backward light cone into itself. Thus, by the statement

(3.10), one gives a sign sense to R in a covariant way for any real

coordinate system.

The conditions (3.2) and (3.10) were first obtained by Rainich

in 1925, using somewhat different matrix methods than we have used.

They are usually referred to as the algebraic Rainich conditions and,

indeed, are algebraic in the sense that they follow from a consideration

of f and T at a single world-point P.I v I~1v

This completes the derivation of (0.2a, b, c) from (0.1), so

only the differential relation (0.2d) remains to be considered. This

differential relation will be our most important and interesting result. 1
We have derived the algebraic conditions (0.2a, b, c) mainly for the

sake of completeness and in order to lay a groundwork for the final

relation (0.2d).

4. The differential relations of Wheeler and Misner

In order to obtain (l.2d) we need to take into account the fact

that f obeys the Maxwell equations (0.1b,c). At the world-point

P in our special system we can ignore the distinction between contra-

variant and covariant indices and between ordinary and covariant

derivatives of first order. This allows us to rewrite (O.lbc) as

1

16



(4.1) a) f =0; b) *f -0

where we have retained the Einstein summation convention without regard

for index position.

Our aim now is to study how equations (4.1) reflect themselves in

properties of the tensor R . Observe first that, given an energy mo-

memtum tensor T according to (2.6), one can only obtain f up to

a parameter a which may depend on the point considered. Algebraically,

the a field at different world-points could be completely incoherent,

but we will find that the Maxwell equations (4.1) provide a differential

system for a which makes it a determined point function. The inte-

grability condition on the system will be the Wheeler-Misner relation

which we seek.

Let r = ' and write f in the general form (2.6).

(4.2) f4V = r cosh a P1v + r sinh ag

By inspection of (2.1) the dual of f is found to be

(4.3) *fv P r cosh a gv + r sinh ap

Recall that our special coordinate system is still arbitrary to

an orthogonal transformation. This allows us to assume without loss of

generality that the matrix Q which appears in the definition of p

and q is precisely the identity matrix I. Then p and q at the

world-point P take the particularly simple forms

17



(ij 0) (0 0)

It follows then from (2.4) that the energy-momentum tensor beccmes

and that the Maxwell equations at P are

a) f vIv = PiV (r cosh a) V + 4v (sinha) IV

+ r cosh a p + r sinh a q = 0

(4.6)
( 6) b) f o = q (r c s ) + P (r sinh ) IVvlv %v osh ) l P Iv

+ (r cosh a) q + (r sinh a) p = 0

iivlv vlv

To simplify (4.6) define at the world-point P vectors T4
and K and scalars A and B as follows:

(4.7) = ; K =q 0 ; A = r cosh a; B = r sinh a

Then Maxwell's equations (4.6) reduce to

(4.8) a) p A +q B + ATT + BK 0

b) VAI +p B V +A K + BT = 01 Iv

18



Now multiply a) by -, b) by , add the two results, and use (2.2)

to obtain easily

(4.9) A[p TV + Z4V K + (log r) + B[_ T+P KT + a =0

poL V IV VP iv 1V

Similarly, multiply a) by q, b) by p, and add to get

(io) Ak + 0 K + a ) + B[ i +
(4 1) A -llvV KV~' + a ~ + 11VTT q4, K V + (log r) 4 0

By the definition of A and B and the structure of these equations,

it is clear that (4.9) and (4.10) are consistent only if the coeffi-

cients of A and B are zero. Thus we obtain

a) a - - ('q 7TI '- K )

(4.11)

As we indicated above the a field is now seen to be subjected to a

simple differential system.

The next step in our development is to calculate the vectors

T and K and to use the result to put (4.11) into a more inform-

ative and interesting form. In order to do this we first will calculate

the derivatives of the matrices p and q. At the world-point P

these matrices are precisely the p and Z in (44), but as we move

to a nearby world-point P(E;4), displaced from P by a distance e

in the I.-th coordinate direction, these matrices will become p(

19



and q(4) which differ from p and q by a small rotation in space-

time corresponding to an orthogonal matrix Q(,). Let us represent

this matrix Q(,) by a series

(4.12) Q(G) I + E C() + o2 D o+

The orthogonality of Q(,) then implies that C(,) must be anti-

symmetric, as is well known, and that its inverse is

It is now easy to calculate the derivatives of p and q at

Pin the -th direction. We have from (2.1), (4.12), and (4.13)

(4.14) p T p .- + Elp ci - C( ) p ] + O(C2) "

Now subtract p from both sides, divide by e, and pass to the limit

e -+0 to obtain

(4.15) P = p C) GO C o P

and similarly for q . If we write C(P) in terms of 2 X 2 sub-

matrices as

/a(,) b)

(4.16) Co
C() d1)(C)

20



then the antisymmetry of C( implies that a() = - aT( 4.

d ( -) " d(0), and b~ ( =) M C . Now substitute (4.16) and (4.4)

into (4.15) to obtain an explicit form for p

(0 JboM

(4.17) p i

Similarly, we find for q J

0 -bM

(4.18) q l i ( )

We will later need the derivative T at P, so we will
'p

obtain it now while it is most convenient. Recall that T may be

written as

(4.19) r2(p 2 q2

Using (4.4), (4.5), (4.17), and (4.18) it is then easily seen that

(4.20) T =(log r) 2 T + r214 IP ( } o M

Observe that in the above expressions for p ,P q ' and T

21
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only the 2 X 2 matrices b(,) and C() b T occur. Let us

write these explicitly as

k I kg

(4.21) b () m n c( =- )

and substitute into (4.17), (4.18), and (4.20) to get

0 0 m n

0 0 -k -A

i-M k 0 0

-n '0 0 1

0 0 -k0 0 n -m

(4.22) b) q -Wio o

A1 -n .0 0

k M 0 0

0 0 k

c) T (logr) 2 +r-- -
k M: 0 0

I n 0 01

I

I



A straightforward calculation then yields

m3 + n4

-k -I

a) "TL - p 3 4' a) g V " P vlv "

-n + 2

(4.23)

A 3-k4
n3 4

b ) K , q -I 32

k 1  + m

We have achieved an explicit form for K and TTP in terms of

the components of C Let us substitute now the results (4.23) into

(4.11a) and use (4.4) to get an explicit form for a
Il.

n3 - m4

k4 A3

(4.24) a 2

ml-k 2

Observe an important fact at this point: the vector aIl.
is composed of the same components k , AP m P and n which

occur in T and is, therefore, expressible in terms of T alone.

Indeed, our only remaining problem is to express the correspondence of

a and T in covariant form. To do this consider the covariant

vector

23



(4.25) v % - VBV T

which we will now calculate at P in our special coordinate system.

By (4.5) the denominator is simply r4. The numerator takes the simple I
form

(4.26) 1"7T -E),Vj37 T T7 =L XkVA T .4V T 7 y

Using the explicit form (4.20) for T we have

(4.27) C VAY T 1 = 2(log r) IV ) 7 I

20 b W1
+ r E .V13Y -c 0( ) 0 ) T

The Rainich condition (3.2b) and the Einstein equations (0.la) tell us -

that T T is a multiple of the metric tensor and is, therefore,

symmetric in 0 and 7; since E is totally antisymmetric the

first term of (4.28) vanishes identically. A short calculation using

(4.21) and (4.5) then reveals that

0 0 -kv  -1

0 0 -m v  
-n

~LI --

(4.28) T T = r 0.0.

\v n 0 0 t
24 no



A

and a slightly tedious but elementary calculation gives

n3 -m4*'
e XVO T AVI T 1

(4.29) V Tok  - 2 nj1

Tl -k2

Comparing this with (4.24) we see that

-c T T7v

(4.30) a =V M T 1 Tf

x T~k pk

which is in tensor form and therefore valid in general. Using the

Einstein equations (O.la), we can also write this in geometric form as

(4.31) alx= =v /f" E 7 k.~l
k

The differential relations of Wheeler and Misner follow

immediately from (4.31), for in order that (4.31) be an integrable

relation we must have

(4.32) V -V 0 o

Thus we have finally obtained (0.2d), the last basic relation of the

already-unified field theory.

25
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